
 

How can you mathematically determine and prove the emission spectrum of hydrogen? 
 
Introduction 
 
Rationale 

The concept of emission spectra is one of the key foundational ideas learned early on in any 
chemistry class. I was first exposed to this a few years ago in my General Chemistry class, and then in 
my IB Chemistry HL Class. Much like how the many types of sciences have concepts that are connected 
to each other, I do a great deal of mathematics in my chemistry such as in units like Stoichiometry. 
Though it was abundantly clear that both disciplines are deeply intertwined, the topic this exploration is 
being done on, in classes, had conceptual understanding prioritized above any mathematical calculations 
associated with it. Thus, I deemed it appropriate to conduct a mathematical exploration into the world of 
chemistry in order to gain access to an understanding of emission spectra through a new perspective. 
 
Aim 
 The aim of this experiment is to mathematically determine the emission spectrum of hydrogen 
through theoretical calculations, and then prove the validity of these theoretical calculations by processing 
existing emission data. Thus, the investigation will be split into two parts. In the first part (theoretical), the 
Rydberg Equation will be derived and the upper bound of the Balmer Series will be extrapolated. The 
second part of the investigation (experimental) will focus on calculating wavelengths from emission data, 
thus allowing for the comparison of theoretical and experimental values.  
 
Background Information 
 Emission spectra rely on the scientific idea that light can be depicted as both a wave and a 
particle, and it is widely taught to familiarize students with the concepts of the electromagnetic spectrum, 
as well as energy levels within an atom. It is a collection of specific wavelengths within the visible light 
spectrum (380–700nm) (NASA, 2010), that varies based on chemical element. A method of determining 
the emission spectrum of an element is by passing an electric current through the element in gas form at 
a low pressure, resulting in the gas (which is contained in a gas discharge tube), glowing a specific color 
(Libretexts, 2022). The light emitted from the tube from this excitation is then observed through a 
diffraction grating located on a spectrometer, which shows various discrete wavelengths of light that 
combine to make up the specific color of that element’s gas (Keller, 2020). 

In the case of this experiment, I chose the example of hydrogen to explore, as it has only a single 
electron, thus we are able to make concrete calculations without having to factor in multiple electron 
movements. In order to understand hydrogen’s emission spectrum, it is necessary to familiarize oneself 
with the two following diagrams: 
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Figure 1. Hydrogen’s Bohr Model 
(Boundless, 2022) 

Figure 2. Convergence of energy levels 
(Eliza et al., 1961) 

  

 
 Figure 1 is what chemists commonly call a “Bohr Model.” It is a commonly constructed model of 
any element (in the above case, hydrogen) that depicts the nucleus as well as electrons of the atom. 
Though there are certain limitations to the model, as it does defy principles of uncertainty within chemistry 
due to its assumption that an electron’s exact position and speed can be determined with full accuracy, for 
this exploration it will suffice. The circles surrounding the nucleus (labeled 1n, 2n…) are the energy levels 
of the atom. Though figure 1 only represents 3 energy levels within the hydrogen atom, in actuality the 
number of energy levels an element has is infinite, much like what is demonstrated in figure 2. The 
distance between these energy levels (the energy difference between them) decreases as the number of 
energy levels increase, thus resulting in them eventually converging. 

Hydrogen gas, when alight from the mechanism mentioned prior, can be observed to be a very 
distinct pink color. When the hydrogen atom is in its excited state (when it is energized), its one electron 
will move up from its ground state to any higher energy level (n=2,3,4…), depending on how much energy 
has been absorbed. Afterwards, the electron falls down to a lower energy state, which can be the ground 
state (n=1) or any other lower level (for example, an electron can go from n=6 to n=5), and a photon 
(particle of light) is emitted (Source: Arlington Central School District). These photons have certain 
energies based on the original location of the electron on the upper energy level, and where it fell down to 
afterwards (the distance and energy that corresponds with the distance, refer to fig. 2). Each photon of 
light released has a specific wavelength and frequency, and can be located on the EM spectrum. 
Chemists are able to split the emissions of hydrogen into specific series, depending on which energy level 
the electron falls down to: 
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Spectral Series Location on Spectrum Transition 

Lyman Ultraviolet nX → n1, where  𝑋 > 1

Balmer Ultraviolet and Visible Light nX → n2, where  𝑋 > 2

Paschen Infrared nX → n3, where  𝑋 > 3

Brackett Infrared nX → n4, where  𝑋 > 4

Pfund Infrared nX → n5, where  𝑋 > 5

Humphreys Infrared nX → n6, where  𝑋 > 6

Table 1. Spectral series and their transitions 
 
 Note that notation for energy level can be expressed in multiple ways. For example, energy level 
5 can be written as: 5n, n=5, and n5. This investigation will use latter notation for its calculations and 
explanations. 

Due to there being infinite energy levels, there are still other series that exist. However, they are 
unnamed and less relevant. This exploration will specifically only focus on the Balmer series, which 
contains several wavelengths in the ultraviolet and visible light spectrum. Because this is the only 
observable series to the human eye, experimentally obtained values that will be presented further in the 
investigation are only limited to this series within the visible light spectrum, the colors of which are 
primarily composed of  violet, blue-violet, blue-green, and red (Purdue University). Thus, theoretical 
calculations will also only focus on the Balmer series as well for the sake of further comparison. 
 
 
Theoretical Calculations 
 
Rydberg Equation 
The Rydberg Equation is a substitution of the many other equations already present within science. The 
following will be a narration of how it is derived. 
 
Firstly, it has been established in the background information that the energy emitted by a photon is the 
same as the energy difference between an electron transitioning from a greater energy level, which will be 
called  (i stands for initial), to a lesser energy level  (f stands for final), with both  and  needing to 𝑛

𝑖
𝑛

𝑓
𝑛

𝑖
𝑛

𝑓

be positive integers. 
 

 𝐸
𝑝ℎ𝑜𝑡𝑜𝑛

= ∆𝐸
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

 𝐸
𝑝ℎ𝑜𝑡𝑜𝑛

= 𝐸
𝑛

𝑖

− 𝐸
𝑛

𝑓

 
Planck’s equation shows the relationship between energy  and frequency  along with Planck’s 𝐸 𝑣
constant, . However, we also know that frequency can be calculated by dividing the speed of light  by ℎ 𝑐
wavelength . λ
 

Planck’s equation:  𝐸
𝑝ℎ𝑜𝑡𝑜𝑛

= ℎ𝑣
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Frequency equation:  𝑣 = 𝑐
λ

 
Therefore, we can establish (after substituting the  in Planck’s equation) with the value of  in the 𝑣 𝑣
frequency equation that: 
 

 𝐸
𝑝ℎ𝑜𝑡𝑜𝑛

= ℎ( 𝑐
λ ) = 𝐸

𝑛
𝑖

− 𝐸
𝑛

𝑓

 ℎ𝑐
λ = 𝐸

𝑛
𝑖

− 𝐸
𝑛

𝑓

 
Niels Bohr established that any nth energy level is related by dividing the energy of the first energy level 

 by the squared of  ( ) (Princeton, 2012). Thus, 𝐸
1

𝑛 𝐸
𝑛

=
𝐸

1

𝑛2

 

 ℎ𝑐
λ = (

𝐸
1

𝑛
𝑖
2 −

𝐸
1

𝑛
𝑓

2 )

 ℎ𝑐
λ = 𝐸

1
( 1

𝑛
𝑖
2 − 1

𝑛
𝑓

2 )

 ℎ𝑐 × 1
λ = 𝐸

1
( 1

𝑛
𝑖
2 − 1

𝑛
𝑓

2 )

 1
λ =

𝐸
1

ℎ𝑐 ( 1

𝑛
𝑖
2 − 1

𝑛
𝑓

2 )

 

The energy associated with the first orbit of the hydrogen atom is . Both  and  − 2. 18 × 10−18𝐽 𝑎𝑡𝑜𝑚−1 ℎ 𝑐

are constants with the values of  and  respectively. Therefore, the 6. 63 × 10−34𝑚2 𝑘𝑔 𝑠−1 3. 00 × 108𝑚 𝑠−1

value of the Rydberg constant for Hydrogen, which is equivalent  can be calculated. 
𝐸

1

ℎ𝑐

 

 𝑅 =
𝐸

1

ℎ𝑐

 𝑅 = −2.18×10−18

6.63×10−34 • 3.00×108

 𝑅
(𝑏𝑒𝑓𝑜𝑟𝑒 𝑛𝑒𝑔)

≈− 1. 097 × 107

 

By substituting this value back into the equation that has been derived so far: , the 1
λ =

𝐸
1

ℎ𝑐 ( 1

𝑛
𝑖
2 − 1

𝑛
𝑓

2 )

final equation can be obtained. The  value becomes positive when the positions of  and  are 𝑅 1

𝑛
𝑖
2

1

𝑛
𝑓

2

switched because a  is taken out. −
 

 1
λ =− 1. 097 × 107( 1

𝑛
𝑖
2 − 1

𝑛
𝑓

2 )

 1
λ = 1. 097 × 107( 1

𝑛
𝑓

2 − 1

𝑛
𝑖
2 )

Commonly expressed as:  1
λ = 𝑅( 1

𝑛
𝑓

2 − 1

𝑛
𝑖
2 )
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The values for  and  can be substituted based on which series is being represented as long as 𝑛
𝑓

𝑛
𝑖

𝑛
𝑖

> 𝑛
𝑓

. For example, an electron begins ( ) at energy level 6, and then falls down ( ) to level 2, thus going 𝑛
𝑖

𝑛
𝑓

from  to . This would mean  and . Using this information, we are able to calculate the 𝑛
6

𝑛
2

𝑛
𝑖

= 6 𝑛
𝑓

= 2

wavelength of light that is emitted by the photon from this transition: 
 

 1
λ = 𝑅( 1

22 − 1

62 )

 1
λ = 1. 097 × 107( 1

4 − 1
36 )

 1
λ = 1. 097 × 107( 2

9 )

 λ = 1
2438666.667

 λ ≈ 4. 100 × 10−7

 
The wavelength is found in meters. Wavelengths are commonly expressed in nanometers. 
 

 4. 100 × 10−7𝑚 × 1×109𝑛𝑚
1𝑚 ≈ 410𝑛𝑚

 
The following is a table made of the calculations done for the different transitions in the series, the 
calculation that was just done is highlighted in yellow. Because  is able to go up infinitely, 6 wavelengths 𝑛

𝑖

were calculated using the derived Rydberg equation in order to gather sufficient data to observe the trend 
of convergence in the figure 3 (all wavelengths are rounded to the nearest whole number). 
 

Series  𝑛
𝑖

 𝑛
𝑓

Wavelength (nm) 

 
Balmer 

3 2 656 

4 2 486 

5 2 434 

6 2 410 

7 2 397 

8 2 389 

Table 2. Calculated wavelengths (theoretical) 
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Figure 3. Plotted wavelengths in nm ( ) 𝑥 = λ
 
 As one can observe, the wavelengths in the series tend to converge as there is less of an energy 
disparity between the higher energy levels. This can be observed as the red lines tend to get closer 
together towards the left of the spectral graph. However, since  is able to be infinitely high considering 𝑛

𝑖

the limitless number of energy levels of an atom, one must be able to determine the highest value of  so 𝑛
𝑖

that the differences between calculated wavelengths are negligible. This is done by calculating the 
frequency limit of a series. 
 

First, the frequency must be found from the wavelengths calculated. Additional wavelengths up to 
 were calculated in table 3 to demonstrate a better pattern of data. All variables have the same 𝑛 = 11

significance as prior calculations. A sample calculation here is shown for 656nm, which is the transition 
. 𝑛

3
→ 𝑛

2

 
 𝑣 = 𝑐

λ

 𝑣 = 3.0×108

656

 𝑣 ≈ 457317. 0732
 

The energy increase between successive is calculated by subtracting the frequency ( ) of adjacent 𝑣
energy level transitions. This is used to determine , which is the difference in frequency between these two ∆𝑣
energy levels. 
 

 𝑣 𝑜𝑓 (𝑛
𝑖

→ 𝑛
2
) − 𝑣 𝑜𝑓 (𝑛

𝑖+1
→ 𝑛

2
)

 𝑣 𝑜𝑓 (𝑛
3

→ 𝑛
2
) − 𝑣 𝑜𝑓 (𝑛

4
→ 𝑛

2
)

 617283. 9506 − 457317. 0732 = 159966. 8774
 ∆𝑣 = 159966. 8774𝐻𝑧

 
The following table has the calculated values from the transition of  up to . 𝑛

3
→ 𝑛

2
𝑛

11
→ 𝑛

2
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Energy Level Transition 
( ) 𝑛

𝑖
→ 𝑛

2

Wavelength (nm) Frequency (Hz) Frequency (Hz) ∆

3 → 2 656 457317.0732 159966.8774 

4 → 2 486 617283.9506 

73960.289 

5 → 2 434 691244.2396 

40463.0775 

6 → 2 410 731707.3171 

23960.1892 

7 → 2 397 755667.5063 

15540.7199 

8 → 2 389 771208.2262 

12081.591 

9 → 2 383 783289.8172 

6183.867 

10 → 2 380 789473.6842 

4177.1095 

11 → 2 378 793650.7937 

Table 3. Frequency and Frequency for the Balmer series ∆
 
 The value of  continuously decreases as the value of the upper bound, or  increases. ∆𝑣 𝑛

𝑖

Eventually, it will reach zero, meaning that there is no frequency difference between energy levels. Two 
lines from this data set can be plotted that represent this trend. One line plots the greater frequency 
against the change in frequency. For example, a coordinate would be (457317.0732, 159966.8774). The 
other plots the lesser frequency against the change in frequency. For example, a coordinate would be 
(617283.9506, 159966.8774). Because both lines converge to the same point on the x-axis, it does not 
matter which one is used. The -intercept, or where the change in frequency is zero, represents the point 𝑥
in which energy levels converge to distances so small the jump between two levels is essentially 
nonexistent. 
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Figure 4.  𝑣 𝑣𝑠 ∆𝑣

 
 The line for the red dots, which were the greater frequency, will be called . The line for the 𝐿𝑖𝑛𝑒 𝐴
blue squares, which were for the lesser frequency, will be called . Logger Pro gives the equations of 𝐿𝑖𝑛𝑒 𝐵
the lines are as follows: 
 

A:  𝑦 =− 1. 498 × 10−22𝑥5 + 4. 16 × 10−16𝑥4 − 4. 261 × 10−10𝑥3 + 1. 89 × 10−14𝑥2 − 30. 17𝑥 + 1

B:  𝑦 =− 7. 801 × 10−24𝑥5 + 1. 752 × 10−17𝑥4 − 1. 205 × 10−11𝑥3 + 1. 169 × 10−6𝑥2 + 𝑥 + 1
 

Additionally, Logger Pro also provides us with the correlation values for each line. A line that showed a 
perfect correlation (1) was unable to be found, however correlations of 0.9998 for line A, and 0.9999 for 

line B should still suffice in determining the unknown frequency value. Note that because these lines 
theoretically converge at the same spot on the x-axis, it makes close to no difference which line is chosen 

for this calculation: 
 

However, because line B has correlation value closer to 1, (0.9999), the -intercept for it is found: 𝑥
 

 𝑥 ≈ 795886. 5992 𝐻𝑧
 
 This means that at a frequency approximately , there is zero difference between 795886. 5992𝐻𝑧
the energy levels, meaning that they have fully converged. We can find the  value (or the upper bound 𝑛

𝑖

of the energy levels) of this by first converting the obtained frequency value ( ) and converting it to 𝑣
wavelength in meters. 
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 λ = 𝑐
𝑣

 λ = 3.0×108

795886.5992

 λ ≈ 376. 93𝑛𝑚 × 1𝑚

1.0×109𝑛𝑚
= 3. 79 × 10−7𝑚

 
Then, through plugging in the calculated wavelength into the Rydberg equation, we can calculate the 
value of . 𝑛

𝑖

 
 1

λ = 𝑅( 1

𝑛
𝑓

2 − 1

𝑛
𝑖
2 )

 1

3.79×10−7 = 1. 097 × 107( 1

22 − 1

𝑛
𝑖
2 )

 2652955. 331 = 1. 097 × 107( 1

22 − 1

𝑛
𝑖
2 )

 0. 241837 = 1
4 − 1

𝑛
𝑖
2

 8. 16269 × 10−3 = 1

𝑛
𝑖
2

 1

8.16269×10−3 = 𝑛
𝑖
2

 122. 509 = 𝑛
𝑖
2

 𝑛
𝑖

≈ 11. 068

 
 Thus, it can be verified that at a little over , energy levels converge at a limit, and all 𝑛

𝑖
= 11

subsequent energy levels (12, 13, etc.) will demonstrate the same wavelength and position on the 
electromagnetic spectrum. There is however, a slight discrepancy to be noted, because the number was 
rounded to the nearest whole number, seeing as  is required to be a positive integer. 𝑛

𝑖

 Extrapolating the upper bound of the energy levels or where they all converge may be useful to 
scientists, because the frequencies and wavelengths are the same beyond a certain calculated value of 𝑛

𝑖

. Thus, there is a recognized limit where going beyond it produces the same result. This avoids any 
redundancy in calculations, as experimenting just to get the same answer due to this convergence may 
not have any merit. 
 
 
Experimental Calculations 
 

The following data was collected from an assignment in my IB Chemistry HL course. Though data 
on wavelength can be collected through a spectrometer, the most important component of a spectrometer 
is the diffraction grating, which is a tool that takes advantage of light’s ability to diffract, or be 
separated/spread out into its constituent wavelengths. Equipped with only the latter material, one is still 
able to calculate the wavelengths of a hydrogen gas by obtaining two vital measurements: the distance 
between the diffraction grating and the light source, and the distance between the first central and the first 
maxima. The following measurements are of a small portion of the Balmer series. Only the measurements 
within this series in the visible light spectrum were able to be obtained, as ultraviolet light is not 
observable with the human eye. 
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Distance between 
grating and light (m) 

Color Distance between 1st 
central and 1st maxima 
(m) 

d2 

0.4030 Violet 0.089235 0.091 

0.4030 Blue-Violet 0.09476 0.095 

0.4030 Blue-Green 0.10687 0.11 

0.4030 Red 0.14861 0.15 

Table 4. Obtained experimental values 
 

In order to understand why such values are significant, one must understand the trigonometric 
applications to this method of data collection. 

Because the data collection method is able to be modeled as a right triangle (see figure 5), we 
are able to use the measurements acquired in order to find the angle of diffraction, which is the value 
needed to calculate wavelength. 
 
In figure 5: 

 = angle of diffraction (in degrees) θ
Adjacent = distance between grating and light (denoted as ) 𝑑

1

Opposite = distance between 1st central and 1st maxima (denoted as ) 𝑑
2

 
 
 
Thus, the angle of diffraction is able to be calculated with 

the equation:  𝑡𝑎𝑛θ = (
𝑑

2

𝑑
1

)

Which becomes:  θ = 𝑡𝑎𝑛−1(
𝑑

2

𝑑
1

)

A sample calculation is done for Violet: 
 

 𝑑
1

= 0. 4030
 𝑑

2
= 0. 090

 θ = 𝑡𝑎𝑛−1(
𝑑

2

𝑑
1

)

 θ = 𝑡𝑎𝑛−1( 0.090
0.4030 )

 θ ≈ 12. 589º
 
 
 

Figure 5. Experimental trigonometric diagram (by me) 
 

We have established light diffracts. However, its other property is interference. The two slits in 
which waves of light are observed through result in both constructive and destructive interference. We will 
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be using the equation for constructive interference in this calculation, as it is the type of interference that 
leads to the appearance of light spots. 
 
Constructive interference:  𝑑𝑠𝑖𝑛θ = 𝑚λ
Rearranged to isolate , we are able to obtain:  λ λ = 𝑑𝑠𝑖𝑛θ

𝑚

  = distance between slits, measured to be  𝑑 1. 869 × 10−6𝑚
  = angle of diffraction (calculated above, ) θ 12. 589º
  = order of interference, an integer describing the light’s interference (in this case, ) 𝑚 𝑚 = 1
 

 λ = 𝑑𝑠𝑖𝑛θ
𝑚

 λ = (1.869×10−6)𝑠𝑖𝑛12.589
1

 λ = (1. 869 × 10−6)(0. 21796)

 λ = 4. 07 × 10−7𝑚 × 1.0×109𝑛𝑚
1𝑚

 λ ≈ 407𝑛𝑚
 
The theoretical calculations from earlier from the Rydberg formula can be taken in order to determine the 
accuracy of the experimental values acquired, as shown in table 5. The percent error was calculated with 
the following formula: 
 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = | (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ−𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ)
𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ | × 100

 
For example, here is the calculation made for the percent error Violet: 
 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = | (407−410)
410 | × 100

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 ≈ 0. 00732 × 100
 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 ≈ 0. 732

 
This was done for all wavelengths: 

 

Color Energy level 
transition 

Theoretical 
Wavelength (nm) 

Experimental 
Wavelength (nm) 

Percent Error (%) 

Violet 6 → 2 410 407 0.732 

Blue-Violet 5 → 2 434 429 1.152 

Blue-Green 4 → 2 486 492 1.235 

Red 3 → 2 656 651 0.762 

Table 5. Comparisons between theoretical and experimental wavelength 
 
 As can be seen, the highest percentage of error within these values was 1.235% for the energy 
level transition between 4 → 2. This is an immensely low value, meaning that the obtained experimental 
results correspond well with the theoretical wavelengths that were calculated in the first part of the 
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investigation. This demonstrates the accuracy of both the experiment and subsequent calculations, as 
well as the soundness of the theory that was presented. It is possible that percent error might be very 
slightly higher or lower than these values, considering rounding to the nearest whole was done when 
calculating wavelength values. 
 
 
Conclusion 
 

Within the simplest concept taught as a foundation for the beginning of every chemistry course 
lies a depth of mathematical analysis that can be derived both theoretically, and proven experimentally. 
Within this experiment I was able to theoretically determine the emission spectrum of hydrogen in the 
Balmer series through deriving the Rydberg equation and extrapolating the limit of . I was also able to 𝑛

𝑖

prove these calculations by using trigonometry to convert my collected data into values that were then 
compared to the theoretical wavelengths, also using percent error to confirm the accuracy of the 
investigation. Coming into the exploration, there was a certain doubt that because the chemistry was quite 
straightforward, the math would be on the easier side. Such thoughts subsided as I was able to fully 
immerse myself in the research, familiarizing myself with previously lesser-known concepts. 

Atomic excitation is the basis for modern inventions like lasers, as well as biological traits like 
fluorescence (OpenStax). Though hydrogen was explored here, all elements have similar properties, such 
as the ability to absorb energy to release a photon, as well as a convergence of energy levels. The 
Rydberg equation can be applied to all hydrogenic atoms, like He+ as long as they are 1-electron 

systems, with a commonly accepted adaptation of the formula include  (atomic number) multiplied by . 𝑍2 𝑅
However, scientists are still unable to accurately find a formula that encompasses multiple-electron 
systems, which essentially compose the rest of the periodic table excluding certain ions. Thus, an 
exploration into what scientists have done so far to find these values theoretically could be done. 
Additionally, transmittance data has been able to be collected by advanced technology that stems beyond 
the visible light spectrum. Looking into the equipment and methods behind this acquisition could be an 
interesting extension to the investigation. 
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